36
Bioremediation for Sustainable Environmental Cleanup
References
Abou-Shanab, R. A. I., P. van Berkum and J. S. Angle. 2007. Heavy metal resistance and genotypic analysis of
metal resistance genes in gram-positive and gram-negative bacteria present in Ni-rich serpentine soil
and in the rhizosphere of Alyssum murale. Chemosphere. 68(2): 360–367. https://doi.org/10.1016/j.
chemosphere.2006.12.051.
Achal, V. and X. Pan. 2011. Characterization of urease and carbonic anhydrase producing bacteria and their role
in calcite precipitation. Current Microbiol. 62(3): 894–902. http://dx.doi.org.qe2a-proxy.mun.ca/10.1007/
s00284-010-9801-4.
Achal, V., X. Pan and D. Zhang. 2011. Remediation of copper-contaminated soil by Kocuria flava CR1, based
on microbially induced calcite precipitation. Ecol. Eng. 37(10): 1601–1605. https://doi.org/10.1016/j.
ecoleng.2011.06.008.
Achal, V., A. Mukerjee and M. Sudhakara Reddy. 2013a. Biogenic treatment improves the durability and remediates the
cracks of concrete structures. Constr. Build. Mater. 48: 1–5. https://doi.org/10.1016/j.conbuildmat.2013.06.061.
Achal, V., X. Pan, D.-J. Lee, D. Kumari and D. Zhang. 2013b. Remediation of Cr(VI) from chromium slag by
biocementation. Chemosphere. 93(7): 1352–1358. https://doi.org/10.1016/j.chemosphere.2013.08.008.
Barbosa, L. P., P. F. Costa, S. M. Bertolino, J. C. C. Silva, R. Guerra-Sá, V. A. Leão and M. C. Teixeira. 2014. Nickel,
manganese and copper removal by a mixed consortium of sulfate reducing bacteria at a high COD/sulfate
ratio. World J. Microbiol. Biotechnol. 30(8): 2171–2180. https://doi.org/10.1007/s11274-013-1592-x.
Barton, L. L., R. M. Plunkett and B. M. Thomson. 2003. Reduction of metals and nonessential elements by anaerobes.
pp. 220–234. In: L. G. Ljungdahl, M. W. Adams, L. L. Barton, J. G. Ferry and M. K. Johnson [eds.].
Biochemistry and Physiology of Anaerobic Bacteria. Springer. https://doi.org/10.1007/0-387-22731-8_16.
Barton, L. L., F. A. Tomei-Torres, H. Xu and T. Zocco. 2015. Metabolism of metals and metalloids by the sulfate-
reducing bacteria. pp. 57–83. In: D. Saffarini [ed.]. Bacteria-Metal Interactions. Springer International
Publishing. https://doi.org/10.1007/978-3-319-18570-5_4.
Béchard, G., H. Yamazaki, W. D. Gould and P. Bédard. 1994. Use of cellulosic substrates for the microbial treatment of acid
mine drainage. J. Environ. Qual. 23(1): 111–116. https://doi.org/10.2134/jeq1994.00472425002300010017x.
Benner, S. G., D. W. Blowes, W. D. Gould, R. B. Herbert and C. J. Ptacek. 1999. Geochemistry of a permeable
reactive barrier for metals and acid mine drainage. Environ. Sci. Technol. 33(16): 2793–2799. https://doi.
org/10.1021/es981040u.
Beveridge, T. J. and W. S. Fyfe. 1985. Metal fixation by bacterial cell walls. Can. J. Earth Sci. 22(12): 1893–1898.
https://doi.org/10.1139/e85-204.
Bruins, M. R., S. Kapil and F. W. Oehme. 2000. Microbial resistance to metals in the environment. Ecotoxicol.
Environ. Saf. 45(3): 198–207. https://doi.org/10.1006/eesa.1999.1860.
Davey, R. J. and J. Garside. 2000. From Molecules to Crystallizers: An Introduction to Crystallization. Oxford
University Press.
Davis, M. L. 2010. Water and Wastewater Engineering: Design Principles and Practice. The McGraw-Hill
Companies, Inc.
Diels, L., J. Geets, W. Dejonghe, S. van Roy, K. Vanbroekhoven and G. Malina. 2005. Heavy metal immobilization
in groundwater by in situ bioprecipitation: comments and questions about carbon source use, efficiency and
sustainability of the process. Proceedings of the 9th International FKZ/TNO Conference on Contaminated Soil
(Consoil). France, 355–360.
Diels, L., J. Geets, W. Dejonghe, S. V. Roy, K. Vanbroekhoven, A. Szewczyk and G. Malina. 2006. Heavy metal
immobilization in groundwater by in situ bioprecipitation: comments and questions about efficiency and
sustainability of the process. Proceedings of the Annual International Conference on Soils, Sediments, Water
and Energy. Amherst. 11: 99–112. https://scholarworks.umass.edu/soilsproceedings/vol11/iss1/7.
Faghri, A. and Y. Zhang. 2006. Chapter 2: thermodynamics of multiphase systems. pp. 107–176. In: Transport
Phenomena in Multiphase Systems. Elsevier Academic Press.
Faulwetter, J. L., V. Gagnon, C. Sundberg, F. Chazarenc, M. D. Burr, J. Brisson, A. K. Camper and O. R. Stein. 2009.
Microbial processes influencing performance of treatment wetlands: a review. Ecol. Eng. 35(6): 987–1004.
https://doi.org/10.1016/j.ecoleng.2008.12.030.
Gadd, G. M. 2004. Microbial influence on metal mobility and application for bioremediation. Geoderma. 122(2):
109–119. https://doi.org/10.1016/j.geoderma.2004.01.002.
Gibert, O., J. de Pablo, J. L. Cortina and C. Ayora. 2002. Treatment of acid mine drainage by sulphate-reducing
bacteria using permeable reactive barriers: a review from laboratory to full-scale experiments. Rev. Environ.
Sci. Biotechnol. 1(4): 327–333. https://doi.org/10.1023/A:1023227616422.